

Mike Bell, Met Office

UK-IMON work-shop, NOC Southampton, Sep 2013

Contents

- Types of operational marine prediction systems
- A brief summary of applications
- Roles of measurements
- Requirements for observations from each prediction system
 - Present status and priorities for improvement
- How prediction systems can guide observation needs
 - The relative impact of different observations in NWP
 - Sampling scales calculated as part of data assimilation
- Summary

Types of operational marine prediction systems

Prediction type	North-west European shelf	Global	
Storm surges	Yes	No	
Surface waves	Yes	Yes	
3D physical(T, S, u, v)	Yes	Yes	
3D bio-geochemical (sediments, nutrients, phyto & zooplankton)	Yes	Pre-opnl (simple NPZD)	

- Predictions made at least daily to 5-10 days ahead
- 10-40 year "re-analyses" also generated for most systems

Typical applications

- Coastal flooding (surge & waves)
- Safety of operations at sea (ships) (surface waves, currents)
- Search & rescue, pollutant dispersion (surface waves, currents – mainly near the coast)
- Naval tactical advantages (all systems)
- Oil & gas extraction (surface waves, current profiles)
- Weather forecasting (SST & all systems)

Roles of measurements

Calibration: development or tuning of parametrisations

Validation: prior to operational implementation

Monitoring: of accuracy and "busts" on daily basis

Verification: statistics on operational accuracy

Assimilation: to constrain / initialise daily analyses

- The sampling requirements for the various roles differ
- Validation and verification statistics are essential to support exploitation of the predictions

Requirements for observations

- WMO and Space Agencies have "methodologies" for capturing requirements in terms of accuracy and spatialtemporal sampling for each variable
- Max and min values are quoted for each requirement
- Maximum value is threshold to be of any value
- Minimum is value below which little further is gained
- It is essential for the basis of these numbers to be explained because the requirements depend on the prediction system and the role of the observations within it
- Values given here are illustrative not definitive

Surface waves

Current Status

- Moored buoys: very important for calibration, validation & verification
- Altimeter data for surface wind speed and H_s are asimilated by some centres; impact is relatively short-lived
- Required accuracies for H_s 10-50 cm (depending on H_s)
- Spatial scales: in open ocean > 300 km; in shallow water depend on bathymetry; isolated measurements useful for calibration & validation

Some future priorities for improvement

- Moored buoys are expensive: opportunity e.g. for wave gliders?
- Sentinels & Jason are expensive, AltiKa constellations more affordable
- Assimilation of spectral data (e.g. from SAR) could improve swell prediction

Storm surges

Current Status

- Tide gauges: used many times each day to monitor predictions but not for assimilation
- Value of altimeter data on shelf being assessed
- Accuracies of order 2-10 cm; spatial scales 10-100 km

Future Opportunities/Priorities

A constellation of cheap altimeters? (or a swath altimeter??)

Present requirements for assimilation into open ocean prediction systems

Variable	Present data	Accuracy	Spatial sampling	Temporal sampling
SST	In situ, satellites	0.1-0.5K	5-300 km	3 hr - 5 days
SSH	Altimeter	2 – 5 cm	5-25 km	2-10 days
Surface currents	Drifters, satellite	5-25 cm/s	5-100 km	3 hr - 10 days
T profiles	Argo, gliders, XBTs, seals	0.1 – 0.3K	5-300 km	3 hr – 10 days
S profiles & SSS	Argo & satellite	0.05 - 0.2 psu	5-300 km	3 hr – 10 days

- The ranges are very broad. The table does not capture subtleties
- Observations can make complementary contributions (e.g. for SST)
- Globally there are also requirements for sea-ice data (depth particularly)
- Time and space scales for shelf-seas predictions are different

Biogeochemistry & sediments

Current Status

- Sediments: satellite (ocean colour) & in situ data used for calibration
- BGC open ocean: AMT profiles used for validation; satellite (ocean colour) data assimilated; validation with CPR being considered
- BGC shelf seas: buoy & cruise data & satellite colour data used for validation
- Spatial sampling is a secondary issue for calibration and validation;
 model accuracies are not well established

Future Opportunities/Priorities

Robust sensors that could be carried by profiling gliders or drifters

Impact of different obs types on NWP 24 hour forecast errors

Bars depict the relative reduction in a single global measure of the error in energy, calculated using adjoint techniques

Estimates of correlation scales

Met Office

Correlations of differences with those at 4 selected points

Assimilation systems have to specify how errors in the background field are correlated

Ensembles of model integrations are used to estimate this

The correlation scales vary with location

Summary

- Requirement for observations depends on their role
 - Calibration, validation, monitoring, verification, assimilation
- Discussed requirements from each of our prediction systems
 - Surface waves, storm surge, 3D open ocean, BGC
 - What obs we currently use and their role
 - Some suggestions for future priorities:
 - More cost-effective platforms
 - Robust, autonomous BGC sensors
- More mature assimilation systems can guide investment in observations for monitoring

